

Application of Thomas–Reiche–Kuhn Sum Rule to the Parametrization of JDOS of Hydrogenated Amorphous Carbon

DANIEL FRANTA^a, DAVID NEČAS^a, LENKA ZAJÍČKOVÁ^a, VILMA BURŠÍKOVÁ^a, CHRISTOPH COBET^b, IVAN OHLÍDAL^a,

^aDepartment of Physical Electronics, Faculty of Science, Masaryk University, Brno, Czech Republic e-mail: franta@physics.muni.cz

^bLeibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Albert-Einstein-Str. 9, 12489 Berlin, Germany

INE

Electronic structure

Renormalized Tauc-Lorentz model ($\pi \rightarrow \pi^* + \xi^*$ and $\sigma \rightarrow \sigma^* + \xi^*$)

$$\varepsilon_{\rm i}(E) = \frac{J(E)}{E^2} = \begin{cases} 0 & \text{for } |E| \le E_{\rm g} \\ \frac{N}{C} \frac{(|E| - E_{\rm g})^2}{ED(E)} & \text{for } |E| > E_{\rm g} \,, \end{cases}$$

where

 ε

$$D(E) = (E^2 - E_c^2)^2 + B_c^2 E^2$$

$$r(E) - 1 = \frac{N_{j\xi}}{\pi C} \bigg[a(E) \ln|E_g - E| + b(E) \ln|E_g + E| + c(E)A_m + d(E)A_p + e(E)L_m + f(E)L_p + g(E) \bigg]$$

where N, $E_{\rm g}$, $E_{\rm c}$, $B_{\rm c}$ are fitting parameters, a(E), b(E), ... g(E) are rational functions and $C, A_{\rm m}, \ldots L_{\rm p}$ are parameter-dependent constants. The complete model contains two Tauc-Lorentz contributions representing $\pi \to \pi^* + \xi^*$ and $\sigma \to \sigma^* + \xi^*$ transitions. Moreover, this model contains also contributions representing excitations of core electrons $K \to \sigma^* + \xi^*$

Optical constants in wide spectral range

Log-log plot of optical constants of DLC.

Density of the electrons

$$N_{\rm e} = N_{\rm v} + N_{\rm K} = (N_{\pi} + N_{\sigma}) \frac{6 - 5C_{\rm H}}{4 - 3C_{\rm H}} \quad ({\rm eV}^2)$$
$$\mathcal{N}_{\rm e} = 4.617 \cdot 10^{26} N_{\rm e} \quad (1/{\rm m}^3)$$

Schematic diagram of electronic structure of diamond-like carbon.

Electronic structure of graphite and diamond calculated using tightbinding method [1].

Experiment

and phonon absorption calculated by PJDOS models.

Inhomogeneous layer (refractive index profile)

We assumed linear profiles of parameters N_{π} and N_{σ} . Remaining parameters of dispersion model were constant.

Results

Optical constants of DLC film determined using different models on the top and bottom of the film.

		$E_{\mathrm{g}\pi}$	$E_{\mathrm{c}\pi}$	$E_{\mathrm{h}\pi}$	$B_{\mathrm{c}\pi}$	$E_{\mathrm{g}\sigma}$	$E_{\mathrm{c}\sigma}$	$E_{\mathrm{h}\sigma}$	$B_{\mathrm{c}\sigma}$
	model	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
	Fauc-Lorentz	1.359	9.45	_	20.34	6.42	10.59	_	5.39
	$PJDOS_1$	1.241	7.42	13.39	6.44	6.32	11.09	33.9	11.76
	$PJDOS_2$	1.242	7.42	13.51	6.50	6.32	11.09	34.0	11.59
		t	op	ł	oottom	l			
		N_{π}	N_{σ}	N_7	τN	V_{σ}	$C_{\pi\xi}$	$C_{\sigma\xi}$	E_{ξ}
	model	(eV^2)	(eV^2)	2) (eV	$^{2})$ (e ^v	$\sqrt{2})$	3	5	(eV)
_	Tauc-Lorentz	425.4	317.	3 391	.9 46	9.5	_	_	_
	$PJDOS_1$	39.7	989.	0 35.	4 121	6.2	0*	0.663	11.93

$PJDOS_2$	140.2	886.4	125.2	1097.8	0.714^{\dagger}	0.627	12.24
		1.1	$E_{\rm K}$	C_{H}	χ		
	me	odel	(eV)				

Density of the DLC

$$\varrho = \mathcal{N}_{\mathrm{a}} \Big[A_{\mathrm{C}}(1 - C_{\mathrm{H}}) + A_{\mathrm{H}} C_{\mathrm{H}} \Big] u \quad (\mathrm{Kg/m^3})$$

$$\mathcal{N}_{\rm a} = \frac{\mathcal{N}_{\rm e}}{6 - 5C_{\rm H}} \quad (1/{\rm m}^3)$$

- $\mathcal{N}_{\rm a}$ density of atoms (1/m³)
- $A_{\rm C}$ carbon atomic weight (12.01 g/mol)
- $A_{\rm H}$ hydrogen atomic weight (1.008 g/mol)
- u atomic mass unit $(1.6605 \cdot 10^{-27} \text{ Kg})$

Hardness of DLC: $H_{\rm IT} = 21.7 \, {\rm GPa}$

sp^3/sp^2 ratio

$\mathcal{N}_{ m sp3}$ _	$(1 - 3N_{\pi}/N_{\sigma}) - C_{\rm H}(1 - 2N_{\pi}/N_{\sigma})$
$\overline{\mathcal{N}_{ ext{sp2}}}$ —	$N_{\pi}/N_{\sigma}(4-3C_{\rm H})$

	$N_{ m v}$	$N_{ m e}$	$\mathcal{N}_{ ext{e}}$	ϱ	$\mathcal{N}_{ m sp3}/\mathcal{N}_{ m sp2}$
model	(eV^2)	(eV^2)	$(1/m^{3})$	$({\rm Kg/m^3})$	
			top of the D	LC film	
Tauc-Lorentz	742.7	1072	$4.948 \cdot 10^{29}$	1580	-0.613
$PJDOS_1$	1028.7	1484	$6.853 \cdot 10^{29}$	2188	4.74
$PJDOS_2$	1026.6	1481	$6.839 \cdot 10^{29}$	2185	0.622
		b	ottom of the	DLC film	
Tauc-Lorentz	861.4	1243	$5.739 \cdot 10^{29}$	1833	-0.513
$PJDOS_1$	1247.6	1800	$8.312 \cdot 10^{29}$	2654	6.83
$PJDOS_2$	1223.0	1765	$8.148 \cdot 10^{29}$	2602	1.16

Comparison with parameters presented in [1]

photon energy, E (eV)

Modeling

PJDOS model

The PJDOS model was constructed from following contributions

transitions	model	parameters
$\pi \to \pi^*$	IBTL5	$N_{\pi\pi}, E_{{ m g}\pi}, E_{{ m c}\pi}, E_{{ m h}\pi}, B_{{ m c}\pi}$
$\pi \to \xi^*$	HET2	$N_{\pi\pi}, E_{\mathrm{g}\pi\xi}$
$\sigma \to \sigma^*$	IBTL5	$N_{\sigma\sigma}, E_{\mathrm{g}\sigma}, E_{\mathrm{c}\sigma}, E_{\mathrm{h}\sigma}, B_{\mathrm{c}\sigma}$
$\sigma \to \xi^*$	HET2	$N_{\sigma\sigma}, E_{\mathrm{g}\sigma\xi}$
$\mathbf{K} \to \pi^* + \sigma^* + \xi^*$	CEE2	$N_{ m K},E_{ m K}$
$\sigma \to \pi^*, \pi \to \sigma^*$	consider	ed negligible
phonon absorptions	$16 \times \text{GP3}$	

with following substitutions

$$N_{\pi\pi} = N_{\pi}(1 - C_{\pi\xi}), \quad N_{\pi\xi} = N_{\pi}C_{\pi\xi}, \quad E_{g\pi\xi} = E_{\xi} + E_{g\pi}/2$$
$$N_{\sigma\sigma} = N_{\sigma}(1 - C_{\sigma\xi}), \quad N_{\sigma\xi} = N_{\pi}C_{\sigma\xi}, \quad E_{g\sigma\xi} = E_{\xi} + E_{g\sigma}/2$$
$$N_{K} = 2(N_{\pi} + N_{\sigma})\frac{1 - C_{H}}{4 - 3C_{H}}$$

For PJDOS models see poster devoted to a-Si:H.

Tauc-Lorentz 284^* 0.34^* 3.545 $PJDOS_1$ 284^* 0.34^* 1.392 $PJDOS_2$ 284^* 0.34^* 1.391

* Fixed parameter.

[†] Fit is almost independent on this parameter due to the impossibility to separate $\pi \to \xi^*$ and $\sigma \to \xi^*$ transitions. See the quantity χ characterizing the disagreement between theoretical and experimental data (1 is optimum).

Separation of individual contributions

Separation of individual contributions of PJDOS model.

	sp ³ (%)	H (%)	Density $(g \text{ cm}^{-3})$	Gap (eV)	Hardness (GPa)
Diamond	100	0	3.515	55	100
Graphite	0	0	2.267	0	
C ₆₀	0	0		1.6	
Glassy C	0	0	1.3-1.55	0.01	3
Evaporated C	0	0	1.9	0.4-0.7	3
Sputtered C	5	0	2.2	0.5	
ta-C	80-88	0	3.1	2.5	80
a-C:H hard	40	30-40	1.6-2.2	1.1-1.7	10-20
a-C:H soft	60	40-50	1.2-1.6	1.7–4	<10
ta-C:H	70	30	2.4	2.0-2.5	50
Polyethylene	100	67	0.92	6	0.01

Note that sp³=40% corresponds to $N_{sp3}/N_{sp2} = 40/60 = 0.667$.

Acknowledgments

This work was supported by Czech Ministry of Education project MSM 002162241; European Regional Development Fund project CZ.1.05/2.1.00/03.0086; and by Czech Ministry of Trade project FT-TA5/114.

References

[1] J. Robertson, Mater. Sci. Eng. R 37 (2002) 129–281.